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Calculation of the Compressibility Factor 
of Natural Gases Based on the Calorific Value 
and the Specific Gravity I 

J. A. Schouten, 2 J. P. J. Miehels, 2 and M. Jaeschke 3 

The measurement of large volume flows of natural gas in transmission lines 
requires an accurate equation of state for pressures up to about 12 MPa and in 
the temperature range from 265 to 335 K. If a detailed analysis of the gas 
mixture is available, one of the possibilities is to use the virial equation of state. 
However, such a gas analysis is time-consuming and expensive and, therefore, 
not always practical. We have developed a new equation which is based on the 
virial equation but requires limited input data. In general, for any given natural 
gas, the gross calorific value, the specific gravity, and the mole fractions of 
nitrogen and carbon dioxide are known. It will be shown that a knowledge of 
three of these four quantities is sufficient for an accurate prediction of the 
compressibility factor of the natural gas. 
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1. I N T R O D U C T I O N  

The relation among the pressure, volume, and temperature of a system is 
of fundamental importance from both a theoretical and a practical point of 
view. Since the pioneering work of Van der Waals, numerous investigators 
have developed several equations of state based mainly on his ideas. In 
order to obtain better quantitative agreement with experiment, the number 
of adjustable parameters was increased. These equations can also be used 
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for the description of the p-V-T-x behavior of mixtures, if suitable mixing 
and combining rules are applied. Generally speaking, however, a particular 
equation is applicable only for a certain class of systems in a limited 
temperature and pressure range. 

In the natural gas industry, the measurement of large volume flows of 
gas requires an accurate knowledge of the compressibility factor in the tem- 
perature range from 265 to 335 K and pressures up to 12 MPa. Recently, 
a virial equation of state was developed at the Van der Waals Laboratory 
[1] to predict the compressibility factor of natural gases in this tem- 
perature and pressure range. The parameters were determined from data on 
pure and binary systems provided by the GERG (Groupe Europ6en de 
RecherChe Gazi6re) and from open literature. The accuracy of the equa- 
tion, which has been tested for 84 natural gases, is approximately 0.1%. 
Since an equation of state represents the effect of the mutual interactions 
between the molecules of the species composing the mixture, the detailed 
composition of the natural gas must, in principle, be known. 

It is obvious that in many situations the composition of the natural 
gases is not always available; besides, it is both time-consuming and expen- 
sive to obtain a gas analysis. It would, therefore, be favorable to have an 
equation of state based on a restricted number of parameters which are 
directly available to the gas industry. 

Such a simplified equation is presented in this paper. For the applica- 
tion of the equation, three of the four following quantities should be 
known: 

the gross calorific value Hs, 

the specific gravity d, 

the mole fraction of nitrogen, and 

the mole fraction of carbon dioxide. 

If, for example, Hs, d, and the mole fraction of CO2 are given, apart 
from the compressibility factor the mole fraction of N2 is also calculated. 
It is possible to use the equation for hydrogen containing natural gases but 
in that case the mole fraction of hydrogen should also be given. 

2. M O D E L  

The virial equation for a multicomponent mixture can be written as 
follows: 

B C PV 1 + + ... (1) z=mr: 
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with the mixing rules 

i ~ 1  j = l  

n 

i ~ l  j - - I  k 1 

where V is the molar volume of the system and n the number of com- 
ponents. Bij and C~/k are the contributions to the second and third virial 
coefficients from interactions among molecules indicated by the subscripts, 
respectively, and xi is the mole fraction of component i in the mixture. In 
Ref. 1 it is assumed that the natural gases consist of 13 different com- 
ponents. A large amount of data concerning the volumetric behavior of 
pure gases and their binary mixtures had, therefore, to be taken into 
account for Eq. (2) and approximations to Eq. (3). It turned out that, up 
to 12MPa, sufficient accuracy could be obtained by the full equation if 
fourth and higher virial coefficients were omitted. For the development of 
the simplified equation, we make use of the results obtained for the full 
equation. 

In the new approach we consider the natural gas as a three-component 
system consisting of nitrogen, carbon dioxide, and an "equivalent 
hydrocarbon," since only three input data are available. This equivalent 
hydrocarbon (abbreviated CH) represents all hydrocarbons present in the 
natural gas. Two of the components (N2 and CO2) are specified in the 
usual way. The three-component model is valid only if the data (gross 
calorific value, specific gravity) which specify the third component, i.e., the 
equivalent hydrocarbon, characterize the volumetric behavior of that com- 
ponent with sufficient accuracy. Since the application of Eqs. (1)-(3) 
requires a knowledge of the virial coefficients, we have to establish a 
relation between gross calorific value (or specific gravity) and the virial 
coefficients of the equivalent hydrocarbon. 

It should first be pointed out that the gross calorific value H s and the 
specific gravity d are primarily properties of the natural gas, not of the 
equivalent hydrocarbon. Therefore, a method has been developed to con- 
vertHs and d to HcH and Mcn, respectively. Hcn is defined as the molar 
heating value of the equivalent hydrocarbon and Mcn as its molar mass. 
This method is described later. 

It is also worht mentioning that, although a particular natural gas is 
described as a three-component system, this third component is different 
for distinct natural gases. For example, two natural gases may have the 
same mole fractions of N2, CO2, and equivalent hydrocarbon but because 
of differences in the amounts of higher hydrocarbons present, the composi- 
tion of the equivalent hydrocarbon may be different and therefore Hcn. 
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3. VIRIAL C O E F F I C I E N T S  FOR T H E  
E Q U I V A L E N T  H Y D R O C A R B O N  

Bronsted and Koefoed [2]  developed the principle of congruence for 
a mixture of n-alkanes. According to this principle, the excess thermo- 
dynamic functions of a liquid mixture of n-alkanes depend only on the 
average chain length, which is defined as Z x in i  (xi  the mole fraction of the 
ith alkane and n i the number of carbon atoms). Longuet-Higgins [-3] 
proposed the following generalization: if two mixtures, both containing 
chain molecules, are such that these molecules can be divided into identical 
sets of fragments by cutting the chain in suitable places, than these 
mixtures will have identical equations of state and identical solvent 
properties. 

Barker and Linton [4]  applied this principle to gaseous mixtures and 
showed its usefulness for the calculation of the second virial coefficient B 
of mixed n-alkane vapors at high temperature. For an equimolar mixture 
of CHq and C3H8 the principle of congruence predicts that B is equal to 
that of C2H6. The same holds for a mixture of 75 tool %. CH4 and 25 tool 
% n - C s H 1 2 .  In Table I, B calculated from the data in Ref. 1 is given for 
C2H6 and the two mixtures. This table shows that the principle gives a 
good first approximation but is not accurate enough for the calculation of 
the compressibility factor of natural gases with an accuracy of about  0.1%. 
Another problem is that the average chain length is, in general, not an 
integer. Since this value is between 1 and 2 for a natural gas, a pure 
hydrocarbon with the same chain length is not available, and therefore, no 
values for the virial coefficients are available either. Interpolation between 
the pure hydrocarbons is not very accurate. 

On the other hand, it is well known that the principle of congruence 
predicts the molar heating value (H)  reasonably well. For example, for 
C 2 H 6 H =  1560.7 kJ- tool - l, while for CH4-C 3 H8 (50-50) H =  1554.9 kJ.  tool-  1, 
and for CH4-CsH12 (75-25) H =  1551.9 kJ .tool -1. 

Table I. Second Virial Coefficients (in cm 3 .mo1-1) 
for C2H 6 and Mixtures of CH 4 with C3H 8 and n-CsHIz 

Temperature (~ 

0 20 40 60 

C2H6 
CH4-C3 H8 (50-50) 
CH4-n-CsH12 (75-25) 

- 221.8 - 192.3 - 167.3 - 146.8 
-209.6 - 180.7 - 156.3 - 134.8 
-240.0 - 199.5 - 163.8 - 132,0 
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The above results suggest a relation between the molar heating value 
and the virial coefficients. The examples given above show that this relation 
will probably not be very accurate if large amounts of higher hydrocarbons 
are mixed with CH 4. It appears, however, that for natural gases of pipeline 
quality the average chain length is restricted to the range 1-1.25 and the 
molar heating value H to 890kJ.mol 1 < H <  1030kJ-mo1-1. In this 
limited range the principle may work out much better. Moreover, the mole 
fractions of the higher hydrocarbons are not arbitrary but are related to 
each other. The amount of C4H m is approximately one-third that of C3H8, 
the amount of C5H12 roughly one-third that of C4H~ o, etc. [7]. These two 
aspects favor the applicability of a general relation between the heating 
value and the virial coefficients. 

Here, we develop only the relation between the molar heating value of 
the equivalent hydrocarbon Hcn and the virial coefficients. The relation 
between the molecular weight McH and these coefficients is obtained along 
the same lines. 

The second virial coefficient of the equivalent hydrocarbon in an 
arbitrary hydrocarbon mixture of known composition can be obtained 
from Eq. (2) using the data of Ref. 1. The molar heating value of the 
equivalent hydrocarbon, HcH , can be calculated using the calorific values 
of the pure hydrocarbons taken from the literature [5]. In Fig. 1, the 
second virial coefficient is plotted as a function of HcH for seven tempera- 
tures in the range from - 5  to 60~ The composition of the equivalent 
hydrocarbon is taken to be the same as in the 84 natural gases of the 
GERG file. Figure 2 shows the third virial coefficient for the same set of 
gases at the same temperatures. It turns out that in both cases the virial 
coefficient is a quadratic function of Hcn at constant temperature, 

Bc.(T) = Bo(T)+ B,(T)HcH + B2(T)H~H (4) 

and 

CcH(T )  = Co(T) + C,(T)Hc. + C2(T)H2H (5) 

The temperature dependence of the coefficients can be described by 

Bi(T)=Bio+B,1T+Bi2T 2, i=0,  1,2 (6) 

and 

Ci(T) =- Cio + Cil T+ Ci2 T 2, i = 0, 1, 2 (7) 

with T the temperature in K. 
The values for Boo , ..., C22 are reported in the Appendix. It should be 

pointed out that no volumetric data of the natural gases have been used to 
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Fig. 1. The second virial coefficient of a hydrocarbon 
mixture as a function of calorific value at five different 

temperatures. 
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establish the relations (4) and (5). We have calculated these relations only 
for hydrocarbon mixtures of the same character as those present in natural 
gases. 

4. UNLIKE INTERACTION VIRIAL COEFFICIENTS 

The unlike interaction virial coefficients for the system N2-CO2 are 
already known from the full equation [1]. The unlike interaction coef- 
ficients between the equivalent hydrocarbon and both nitrogen and carbon 
dioxide have still to be determined. As usual, these coefficients depend 
upon temperature but in this case also on the composition of the hydrocar- 
bon (or the molar heating value or the molecular weight). The coefficients 
can be calculated from the full equation and fitted with a power series in 
temperature and HcH. This results in a complicated expression. Another 
approach is to write the second unlike interaction virial coefficient for 
CO2-CH without loss of generality as 

Boo2, CH = ~'co2, cI-I (Bco2 BCH ) 1/2 (8) 

where ~ is an arbitrary function of T and composition. Even if ~co2,cH is 
taken to be a constant, Bco:,cH is still dependent on temperature and com- 
position via Bco: and Bcn. A comparison with the coefficients calculated 
from the full equation shows that the agreement is within experimental 
error with the following expression for 

r = -0.865 (9) 

Equation (9) has been tested for gases containing up to 9% ethane. 
Since the second virial coefficient for nitrogen is small and changes 

sign in the temperature range under consideration, the coefficient for 
Nz-CH is expressed as 

(BN 2 + BCH) 
By2'cn = ~N2'CH 2 (10) 

with 

ffN2,CU = 0.72 + 1.875 X 10- 5(320 -- T) 2 (l l)  

One might have anticipated the simple expression (9) for ~. The equivalent 
hydrocarbon consists mainly of C H  4 and C 2 H  6 and if, e.g., Eq. (8) had 
been applied to Bco~,cH 4 and Bco2,c2H~, the resulting values for ~ would 
have been nearly independent of temperature and approximately equal for 
both systems. 
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The third unlike interaction virial coefficients can be described by 

C'ii j = ~ii j( C 2iCj j j )  1/3 (12) 

and 

coj  = ~ij:( c i , i c~ : )  ~/3 (13) 

The unlike interaction coefficient of Nz (or CO2) with all the individual 
hydrocarbons can be calculated and summed up. Since it is not very clear 
which terms contribute to Cio and which to C•j, we have assumed that 
(i,y = (~:. It can be shown that this is a good approximation for N z - C H  4 
and CO2-CH 4. The result is 

(CH, CH, CO2 = (CH, CO2, CO2 = 0.92 

and 

(cH, CH, N2 = (CH, N2,N2 = 0.92 + 0.0013(T-- 270). 

Finally, for the ternary interaction coefficient, we have taken 

CCH, N2,CO2 = 1.10(CcH CN2Cco2) 1/3. 

5. C A L C U L A T I O N  OF H c n  AND MCH F R O M  T H E  I N P U T  DATA 

It has been shown that the relevant data are the molar heating value 
HCH and molar mass MCH, not the gross calorific value H s and specific 
gravity d. We now derive the relation between HCH, MCH , Hs, and d. Let 
us first assume that Hs and the mole fractions of N 2 and CO2 are known. 
The grass calorific value is given in kJ .  m 1, while Hen  should preferably 
be obtained in kJ-mo1-1.  The number of moles in lm  3 gas at normal 
conditions (0~ and 1.01325 bar) is 

1000 
n - (14) 

22.413828 + B 

where 22.413828 is the ideal gas molar volume (in m 3. kmol 1) and B the 
second virial coefficient of the natural gas. Since the number of moles of 
CH is nxcH (XcH is the mole fraction of CH), the following equation can 
now be written: 

Hs(22.413828 + B) 
Hen = (15) 

xcr t 1000 
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As a first estimate for B we take B =  -0.065 m 3 -kmol -k  Equation (15) 
then gives a first approximation for HcR. Substitution of this value in 
Eq. (4) results in a better value for B c .  and therefore for B, using Eq. (2) 
for the three-component system N2, CO2, and equivalent hydrocarbon. An 
accurate value for HcH is obtained via an iteration procedure. The final 
value for HcH is substituted in Eqs. (4) and (5). Using Eqs. (2), (3), and 
(1), the compressibility factor of the gas is calculated. 

Since the most practical application of the model is probably in those 
cases where the gross calorific value Hs, the specific gravity d, and the 
mole fraction of CO2 are known, a detailed elaboration for this situation 
is given. 

The density p of the natural gas at normal conditions is 

3 

p = n  ~ x iM i (16) 
i=1  

where M i is the molar mass of N2, CO2, or CH. Equation (16) contains 
three independent unknown quantities: n, XcH, and McH. Two other equa- 
tions are, therefore, needed. It can be shown easily that the following rela- 
tion exists between McH and Hcn:  

McH = --2.709328 + 0.0210622HcH (17) 

The mole fraction of CH is 

g S 
XcH (18) 

n �9 HcH 

Since we have introduced another variable, Hci~, we need a fourth equa- 
tion, Eq. (14). From Eqs. (14), (16), (17), and (18), n, XcH, McH, and HcH 
can be solved easily in the following way. As a first approximation B-- 
-0.065 m 3.kmO1 1 and HcH--970kJ-mo1-1  are taken, which are both 
in the middle of the range of interest. Substitution of B in (14) and, sub- 
sequently, HcH and n in (18) gives the mole fraction CH. The density at 
normal conditions is then calculated from (16) and compared with the 
experimental density given by dpair (where Pair = 1.2929 k g - m - 3  is the den- 
sity of air at normal conditions and d the specific gravity). If the calculated 
density is too low, Hcn is increased, and vice versa. The value for HcH is 
adjusted using a convergence technique until the difference between 
calculated and experimental density is less than 10 -5. Subsequently, a more 
accurate value for B is calculated. The procedure is repeated until sufficient 
convergence is obtained for HcH and XcH. The compressibility factor can 
then be calculated using Eqs. (4), (5), (2), (3), and (1). 
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The procedure for the other combinations of the input data is similar 
to those described above. The method can also be used for hydrogen- 
containing gases if the mole fraction of H 2 is known. In this case the gross 
calorific value should be corrected for the hydrogen contribution. 

6. COMPARISON BETWEEN EXPERIMENTAL AND 
PREDICTED RESULTS 

The data bank of the GERG contains the experimental values for the 
compressibility factor of a large number of natural gases in the pressure 
and temperature range under investigation. These measurements were 
carried out mainly by Gasunie and Ruhrgas. Different types of gases are 
included in this data set: natural gases containing considerable amount of 
nitrogen, ethane, carbon dioxide, or hydrogen. The total number of 
experimental points is about 4,500. The relative percentage deviation 
between the calculated and the experimental compressibility factor is given 
by 

Zi t a l c  - -  Zi exp 
e i -  ' " ' 100 (19) 

Z i ,  exp  

In Fig. 3, the number of experimental points in a given range of ei is 
plotted as a function of ei. The distribution shows a somewhat larger tail 

1200 
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x 
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Fig. 3. The number of experimental points as a 
function of the relative percentage deviation 
between calculated and experimental compressibility 
factors for the data in the GERG data bank. 
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at the negat ive side. F o r  less than  6% of the points ,  the devia t ion  is more  
than  0.1%. The roo t  mean square  er ror  ( R M S )  defined by 

is well within 0.1% for all these data.  Genera l ly  speaking,  the devia t ions  
have the same tendency as for the full equat ion.  The largest  devia t ions  
occur  mos t ly  at low tempera tu res  and  pressures above  100 bar.  A more  
e l abora t e  c o m p a r i s o n  between exper imenta l  and  ca lcula ted  results  is given 
in Ref. 6. 

A P P E N D I X  

Numer ica l  values for the coefficients in Eqs. (6) and  (7) are as follows. 

Bo(T ) = - 0 . 4 2 5 4 6 8  + 0.286500 1 0 - 2 T  - 0.462073 10 5T2 

B~(T)=0 .877118  10-3 - -0 .556281  10-5T+0.881510 10 8T2 

B2(T) = - 0 . 8 2 4 7 4 7 1 0 - 6  + 0.43143610 S T - 0 . 6 0 8 3 1 9 1 0  11T2 

and 

C o ( T ) =  - 0 . 3 0 2 4 8 8 + 0 . 1 9 5 8 6 1 1 0  2 T - 0 . 3 1 6 3 0 2 1 0  5T2 

CI(T) = 0.646422 10-3 _ 0.422876 1 0 - S T +  0.688157 10 -8T2 

C z ( T ) =  - 0 . 3 3 2 8 0 5  1 0 - 6 + 0 . 2 2 3 1 6 0  1 0 - s T - 0 . 3 6 7 7 1 3  10 1~T2 

The like and  unlike virial  coefficients for N2 ( componen t  2) and  C O  2 
( componen t  3) are the following: 

B22 = --0.144600 + 0.740910 1 0 - 3 T  - 0.911950 1 0 - 6 T  2 m 3. kmol  1 

B33 = - 0 . 8 6 8 3 4 0  + 0.403760 1 0 - 2 T -  0.516570 1 0 - S T  2 m 3 . kmol  1 

B23 = -0 .339693  + 0.161176 10 2 T -  0.204429 1 0 - S T  2 m 3 . kmol  1 

and 

C222 = 0.784980 10-2 _ 0.398950 1 0 - a T +  0.611870 10-7T2 m 6- kmol  --2 

C333 = 0.205130 10-2  + 0.348880 10-  4T--  0.837030 10-7T2  m 6- kmol  2 

C223 = 0.552066 10 -z  _ 0.168609 1 0 - 4 T +  0.157169 10-7T2 m 6 �9 kmol  2 

C233 = 0.358783 10 2 + 0.806674 1 0 - S T -  0.325798 1 0 - T T  2 m 6. k m o l - 2  
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